Semi-Supervised Matrix Completion for Cross-Lingual Text Classification
نویسندگان
چکیده
Cross-lingual text classification is the task of assigning labels to observed documents in a label-scarce target language domain by using a prediction model trained with labeled documents from a label-rich source language domain. Cross-lingual text classification is popularly studied in natural language processing area to reduce the expensive manual annotation effort required in the target language domain. In this work, we propose a novel semi-supervised representation learning approach to address this challenging task by inducing interlingual features via semi-supervised matrix completion. To evaluate the proposed learning technique, we conduct extensive experiments on eighteen cross language sentiment classification tasks with four different languages. The empirical results demonstrate the efficacy of the proposed approach, and show it outperforms a number of related cross-lingual learning methods.
منابع مشابه
Semi-Supervised Representation Learning for Cross-Lingual Text Classification
Cross-lingual adaptation aims to learn a prediction model in a label-scarce target language by exploiting labeled data from a labelrich source language. An effective crosslingual adaptation system can substantially reduce the manual annotation effort required in many natural language processing tasks. In this paper, we propose a new cross-lingual adaptation approach for document classification ...
متن کاملCross-lingual Discourse Relation Analysis: A corpus study and a semi-supervised classification system
We present a cross-lingual discourse relation analysis based on a parallel corpus with discourse information available only for one language. First, we conduct a corpus study to explore differences in discourse organization between Chinese and English, including differences in information packaging, implicit/explicit discourse expression divergence, and discourse connective ambiguities. Second,...
متن کاملCross-lingual sentiment classification: Similarity discovery plus training data adjustment
The performance of cross-lingual sentiment classification is sharply limited by the language gap, which means that each language has its own ways to express sentiments. Many methods have been designed to transmit sentiment information across languages by making use of machine translation, parallel corpora, auxiliary unlabeled samples and other resources. In this paper, a new approach is propose...
متن کاملLearning Cross-lingual Word Embeddings via Matrix Co-factorization
A joint-space model for cross-lingual distributed representations generalizes language-invariant semantic features. In this paper, we present a matrix cofactorization framework for learning cross-lingual word embeddings. We explicitly define monolingual training objectives in the form of matrix decomposition, and induce cross-lingual constraints for simultaneously factorizing monolingual matric...
متن کاملCross-Lingual Classification of Topics in Political Texts
In this paper, we propose an approach for cross-lingual topical coding of sentences from electoral manifestos of political parties in different languages. To this end, we exploit continuous semantic text representations and induce a joint multilingual semantic vector spaces to enable supervised learning using manually-coded sentences across different languages. Our experimental results show tha...
متن کامل